Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

نویسندگان

  • Keisuke Fujisaki
  • Tomoyuki Ikeda
چکیده

To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of MoM-GEC Method for Electromagnetic Study of Planar Microwave Structures: Shielding Application

In this paper, an electromagnetic analysis is presented for describing the influence of shielding in a rectangular waveguide. A hybridization based on the method of moments combined to the generalized equivalent circuit MoM-GEC is used to model the problem. This is validated by applying the MoM-GEC hybridization to investigate a diffraction structure. It consists of electromagnetic diffraction ...

متن کامل

Combined application of sub-toxic level of silver nanoparticles with low powers of 2450 MHz microwave radiation lead to kill Escherichia coli in a short time

Objective(s):Electromagnetic radiations which have lethal effects on the living cells are currently also considered as a disinfective physical agent.   Materials and Methods: In this investigation, silver nanoparticles were applied to enhance the lethal action of low powers (100 and 180 W) of 2450 MHz electromagnetic radiation especially against Escherichia coli ATCC 8739. Silver nanoparticles ...

متن کامل

Electromagnetic Characterization of Composite Materials and Microwave Absorbing Modeling

This book chapter is based on the experimental activities conducted mainly at Sapienza University of Rome: Astronautic, Electric and Energetic Engineering Department in collaboration with University of Maryland, Institute for Research in Electronics and Applied Physics (IREAP). A branch of scientific research about composite materials is focused on electromagnetic characterization and subsequen...

متن کامل

نقش الگوی سپرالکترو مغناطیسی جدید در کاهش امواج مایکروویو(مطالعه موردی باند بسامدی ایکس)

Background and aims:  X-band microwave with 8-12.5 frequency range has various applications such as air control traffic, navy communication and etc. Uncontrolled exposure with microwave can lead to adverse effect on workers. Application of the shielding is superior control for prevention of microwave exposure.The aim of this study is production a new electromagnetic shielding for exposure contr...

متن کامل

Electromagnetic Waves Propagation Characteristics in Superconducting Photonic Crystals

Photonic crystals (PCs) are structures with periodically modulated dielectric constants whose distribution follows a periodicity of the order of a fraction of the optical wavelength. Since the first pioneering work in this field, many new interesting ideas have been developed dealing with one-dimensional (1D), two-dimensional (2D), and threedimensional (3D) PCs. Researchers have proposed many n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013